Study of the Quantitative Structure-Mobility Relationship of Carboxylic Acids in Capillary Electrophoresis Based on Support Vector Machines
نویسندگان
چکیده
The support vector machines (SVM), as a novel type of learning machine, were used to develop a quantitative structure-mobility relationship (QSMR) model of 58 aliphatic and aromatic carboxylic acids based on molecular descriptors calculated from the structure alone. Multiple linear regression (MLR) and radial basis function neural networks (RBFNNs) were also utilized to construct the linear and the nonlinear model to compare with the results obtained by SVM. The root-mean-square errors in absolute mobility predictions for the whole data set given by MLR, RBFNNs, and SVM were 1.530, 1.373, and 0.888 mobility units (10(-5) cm(2) S(-1) V(-1)), respectively, which indicated that the prediction result agrees well with the experimental values of these compounds and also revealed the superiority of SVM over MLR and RBFNNs models for the prediction of the absolute mobility of carboxylic acids. Moreover, the models we proposed could also provide some insight into what structural features are related to the absolute mobility of aliphatic and aromatic carboxylic acids.
منابع مشابه
Prediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملQuantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase and design new compounds by different chemometrics methods
A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) ...
متن کاملApplication of the Phenomenological Model to Electrophoretic Mobility in Mixed Solvent Electrolyte Systems in Capillary Zone Electrophoresis
The phenomenological model of Khossravi and Connors (1992) has been adopted to calculate the electrophoretic mobility of drugs at different concentrations of solvents in a binary mixture. The accuracy and predictability of the model have been evaluated employing 14 experimental data sets by using average percentage mean deviation (APMD). The obtained APMD for correlative and predictive studies ...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and computer sciences
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2004